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This paper proposes a new approach for fast iris segmentation that relies on the closed nested structures
of iris anatomy (the sclera is brighter than the iris, and the iris is brighter than the pupil) and on its polar
symmetry. The described method applies mathematical morphology for polar/radial-invariant image fil-
tering and for circular segmentation using shortest paths from generalized grey-level distances. The pro-
posed algorithm obtained good results on the NICE-I contest and showed a very robust behavior,
especially when dealing with half-closed eyes, different skin colours/illumination or subjects wearing
glasses.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction mathematical morphology to these kind of structures for polar/ra-
Iris recognition is accepted as one of the best biometric features
for individual identification due to several inherent properties of
iris patterns, i.e., stability in lifetime, selectivity and reliability. In
addition, acquisition of iris images is non-invasive and quite flexi-
ble even in non-collaborative frameworks. Nevertheless, as a first
step, the accuracy of iris recognition depends not only on the qual-
ity of the images but also on the image segmentation algorithm
which should extract the effective image region associated exclu-
sively with the iris. To be integrated in an iris recognition system,
the iris segmentation algorithm must be fast (i.e., segmentation is
only a preprocessing step, and the feature extraction and database
matching/classification are then the subsequent steps), and must
be robust. Robustness involves, on the one hand, an algorithm
which deals with the different noise factors (specular reflections,
obstructions due to eyelashes, eyelids, glasses, etc.) and on the
other hand, an algorithm defined by a reduced number of parame-
ters. For an exhaustive and recent state-of-the-art on iris segmen-
tation, the reader is invited to see the paper by Matey [1]. Despite
all these constraints, the eye presents an interesting morphology of
its anatomical elements: polar symmetry of iris and pupil, and
closed nested structures of monotone decreasing intensities (the
sclera is always brighter than the iris, and the iris is always bright-
er than the pupil). We have recently studied the application of
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dial-invariant image filtering and feature extraction [2] and for
circular segmentation using shortest paths from generalized
grey-level distances [3], but in other application fields (quantita-
tive cytology and spots of DNA microarray images). Motivated by
the Noisy Iris Challenge Evaluation – Part I (NICE-I) [4] and by
our previous works on cyclic mathematical morphology, we devel-
oped a robust and fast algorithm to perform segmentation of the
noise-free iris regions acquired at the visible wavelength, on-the-
move, at-a-distance, with minor cooperation and within dynamic
imaging environments. The rest of the paper is organized as fol-
lows. A review on the used morphological tools is given in Section
2. Section 3 describes the different steps of the proposed algorithm.
In Section 4, results of our approach on the NICE-I datasets are dis-
cussed. Conclusions are presented in Section 5.

2. Mathematical foundations of related morphological tools

Mathematical morphology is a nonlinear image processing
methodology based on the application of lattice theory to spatial
structures [5]. In this section, we briefly review the basic morpho-
logical operators and remind other less extended operators which
are the basic ingredients of our iris segmentation algorithm.

2.1. Basic operators

In the framework of digital grids, a grey tone image can be rep-
resented by a function f : Df ! T , where Df is a subset of Z2 and
T ¼ ftmin; . . . ; tmaxg is an ordered set of grey-levels, i.e., a subset of
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Z. f ðxÞ is the grey value of the image at point x ¼ ðx; yÞ. A section of f
at level h (or, the threshold of f at value h) is a set Xhðf Þ (compact
set, Xh : Df ! f0;1g) defined as Xhðf Þ ¼ fx 2 Df : f ðxÞP hg. The ba-
sic morphological operators are the dilation: dBðf ðxÞÞ ¼
supy2Bff ðx� yÞg and the erosion: eBðf ðxÞÞ ¼ inf�y2Bff ðx� yÞg,
where B be a subset of Z2 and k a scaling factor. kB is called struc-
turing element B of size k. The two elementary operations of ero-
sion and dilation can be composed together giving the opening:
cBðf Þ ¼ dB½eBðf Þ� and the closing: uBðf Þ ¼ eB½dBðf Þ�. The morpholog-
ical openings ckBðclosings ukBÞ filter out light (dark) structures
from the image according to a predefined size k and shape
criterion B.

2.2. Geodesic reconstruction, close-hole operator and area opening

A morphological tool that complements the opening and clos-
ing operators for feature extraction (extract the marked parti-
cles) is the morphological reconstruction, implemented using
the geodesic dilation operator based on restricting the iterative
dilation of a function marker f by B to a function mask or refer-
ence g; dn

gðf Þ ¼ d1
gd

n�1
g ðf Þ; where d1

gðf Þ ¼ dBðf Þ ^ g. The reconstruc-
tion by dilation is defined by crecðg; f Þ ¼ di

gðf Þ, such that
di

gðf Þ ¼ diþ1
g ðf Þ (idempotence). In particular, the opening by recon-

struction is defined via the geodesic dilation using an opening as
marker, i.e., crec

k ðf Þ ¼ crecðf ; ckðf ÞÞ ¼ crecðf ; ekðf ÞÞ. Using the geode-
sic reconstruction we can also define an operator to fills all holes
in an image f that does not touch the image boundary f@ (used as
a marker) and therefore provides a parameter free approach to
detect holes in an image, i.e., wchðf Þ ¼ ½crecðf c; f@Þ�c , where f c is
the complement image (i.e., the negative). For a binary image,
the definition of grains and holes is clear, for the case of grey-le-
vel images, a ‘‘hole” is defined as a set of connected points sur-
rounded by connected components of value strictly greater than
the hole values. This close-holes operator is a morphological clos-
ing and therefore removes the dark structures (valleys of
intensity).

In general, we must notice that the filters by reconstruction in-
volve the notion of connectivity (and preserve the ‘‘edges” of the
structures), i.e., if X is connected, ckðXÞ – ; () crec

k ðXÞ ¼ X, and
for functions, the opening by reconstruction is given by:
crec

k ðf ÞðxÞ ¼ supfh 6 f ðxÞjckðcc
xðXhðf ÞÞÞ – ;g, where cc

xðAÞ is the con-
nected component of A marked by x (extracts the connected set
containing x). Area opening is a particular connected operator
based on the notion of surface area [6]. The grey tone area opening
of f of size ka, denoted ca

ka
ðf Þ, is given by: ca

kaðf ÞðxÞ ¼ supfh 6
f ðxÞjAðcc

xðXhðf ÞÞÞP kag, where AðXÞ is the area of X. The area open-
ing can be seen as an opening with a structuring element which lo-
cally adapts its shape to the image structures. In Fig. 1 is given a
toy-example of the effects of the close-holes operator and the area
opening.
Fig. 1. Top, example of area opening ðka ¼ 1000 pixelsÞ. Bottom, example of close-
holes operator.
2.3. Generalized grey-level distance function and shortest paths

The generalized distance function (GDF) for grey-level images
was first introduced in [7]. The algorithm is based on a modifica-
tion of the classic two-pass sequential distance function algorithm
of [8] so that: (1) edge cost is taken into account; (2) raster and
anti-raster scans are iterated until stability. Let us denote by
NþðpÞ (resp., N�ðpÞ) the neighbors of pixel p scanned before p
(resp., after p) in a raster scan, for a 8-connected grid (neighbor-
hood graph). In this graph, to each edge between two neighboring
pixels p and q of an image f one associates the cost value
Cf ðp; qÞ ¼ f ðpÞ þ f ðqÞ (or any other monotonically increasing func-
tion, such as maxðf ðpÞ; f ðqÞÞ or minðf ðpÞ; f ðqÞÞÞ: More specifically,
the algorithm of GDF to set X in image f proceeds as follows:

� Initialise result image d : dðpÞ ¼ 0 if p 2 X and dðpÞ ¼ þ1
otherwise.

� Iterate until stability:
– Scan image in raster order ! For each pixel p, do:

dðpÞ  minfdðpÞ þ a;minfdðqÞ þ Cf ðp; qÞ; q 2 NþðpÞg þ ag.
– Scan image in anti-raster order ! For each pixel p, do:

dðpÞ  minfdðpÞ þ a;minfdðqÞ þ Cf ðp; qÞ; q 2 N�ðpÞg þ ag.

Depending on the cost value considered, the algorithm typically
converges in two or three iterations (relatively efficient). The
parameter a balances the influence of the geometric distance with
respect to the intensity-based distance. In particular, the standard
binary distance function is obtained when Cf ðp; qÞ ¼ 0 and a ¼ 1.
Depending on the choice of the set X, two algorithms are consid-
ered in this paper: shortest path crossing an image and image
centroid.

2.3.1. Global minimal paths, GMP
Each path P in the 8-connect graph has an associated cost Cf ðPÞ,

equal to the sum of the cost of its successive edges. We can now
define the distance df ðp; qÞ between two pixels p and q in the image
f as: df ðp; qÞ ¼minfCf ðPÞ; P path between p and qg. For the sim-
ple problem of finding a path of minimal cost (or global minimal
path, GMP) going from the top row U to the bottom row D of the
image, we use the following result: a pixel p belongs to such a min-
imal path if and only if df ðp;UÞ þ df ðp;DÞ ¼ df ðU;DÞ. This is the ap-
proach introduced by [7]. To extract such Up/Down GMP in image
f, we can therefore proceed as follows:

� Compute GDF to set U in image f: for each pixel p, compute
df ðp;UÞ.

� Compute GDF to set D in image f : df ðp;DÞ.
� Add these two distance functions, df ðU;DÞðpÞ ¼ df ðp;UÞþ

df ðp;DÞ.
� Find umin, the minimal value of df ðU;DÞ and threshold the result

in order to keep only the pixels which values in df ðU;DÞ are
equal to umin.

The criterion to define the shortest path can be ‘‘relaxed” by
considering a greater threshold value, uw�path ¼ umin þ Npaths � 1.
In such a case, by taking the pixels 6 upath and according to the va-
lue of Npaths, a wide minimal path is obtained. Since the extracted
minimal paths are preferentially located on dark pixels (i.e., have
low cost), the original image with the bright track must be inverted
before computing the two GDFs. From an algorithmic point of
view, the problem is reduced to computing two grey-weighted
generalized distance transforms. Fig. 2 shows some examples,
illustrating the robustness against the noise. To give priority to
the ‘‘vertical” paths, the computation of the distance function is
constrained for raster scan to the top-left, top-middle and top-right



Fig. 2. Top, U/D global minimal path using GDF. Middle, two examples of U/D
shortest path detection in very noisy images. Bottom, centroid using GDF.

Fig. 3. Schema of the different modules composing the algorithm.

280 M.A. Luengo-Oroz et al. / Image and Vision Computing 28 (2009) 278–284
pixels of p in the neighborhood NþðpÞ (resp., bottom-left, bottom-
middle and bottom-right for anti-raster scan N�ðpÞ). Another way
to formulate it is to say that at any location along a track, according
to the neighborhood graph used, it is assumed that the absolute va-
lue of the angle between the track and the vertical direction is less
than or equal to 45. This guarantees a certain smoothness to the
extracted tracks. This segmentation can be interpreted in terms
of an optimality criteria framework [7]: (1) the pixel values along
the track (to maximize), (2) the length of the track (to minimize),
(3) the raggedness of the track (to minimize).

2.3.2. Image centroid
Working in polar coordinates involves the selection of the cen-

ter ðxc; ycÞ for each image, and this is a critical choice. If the selected
center point is skewed from the ‘‘real” center of the target struc-
ture, the analysis in polar coordinates may well be wrong. The opti-
mal ðxc; ycÞ can be obtained also with the GDF. The idea is to
compute in image f the GDF to the image border set BB, and then
to consider that the maximum of the corresponding function in-
cludes the grey-level centroid of the image. Being precise, we can
proceed as follows:

� Compute GDF to set BB in image f: for each pixel p, compute
df ðBBÞ.

� Find umax, the maximal value of df ðBBÞ and threshold the result in
order to keep only the pixels which values in df ðBBÞ are equal to
umax: these pixels define set C.

� If C has more than one pixel, compute the centroid (using binary
moments) of set C.

Fig. 2 gives an example of centroid computation. The method is
quite robust and it allows detecting the optimal center for embed-
ded structures. Note also that the GDF distance function only takes
into account the bright structures. Consequently, if we are inter-
ested in the centroid of an object with a large hole, a close-holes
operator can be used to compute either the centroid of the object
without its hole or the centroid of the hole itself.

3. Algorithm

The iris segmentation algorithm is based in a combination of
the above presented morphological tools, working mainly in polar
coordinates. In this section, the different steps are described in de-
tail and illustrated with an iris segmentation example (for which
the proposed method performed the best in the NICE-I contest).

3.1. General framework

In Fig. 3 is provided a flowchart representing the main blocks of
the proposed algorithm. First, a grey-scale image is selected from
the colour image and the reflections are removed. Secondly, a prior
segmentation of the external iris border is obtained and afterwards
the pupil is segmented. Then, the prior outer iris border segmenta-
tion is refined to avoid eyelid and eyelashes artifacts and finally is
combined with the binary masks of the pupil segmentation and
reflections in order to achieve the final result.

3.2. Colour component selection

Let fðx; yÞ ¼ ðfRðx; yÞ; fGðx; yÞ; fBðx; yÞÞ be the original eye colour
image, which is the input to the algorithm. The first step is
the selection of the most appropriate grey-level image for the
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segmentation of the different elements. Based on the hypothesis
that the image objects are better ‘‘separated” when the image his-
togram has more information, the selection relies on choosing the
R, G or B component which presents the maximal entropy of the
histogram, i.e., feyeðx; yÞ ¼ fnðx; yÞ, where n ¼ argC maxHðfCÞ.

3.3. Reflection extraction

The specular or diffused reflections appear on the eye image as
bright spots of different size and shape which can obstruct the iris
texture or to introduce new boundaries for the iris segmentation.
Extraction is achieved using the area opening operator. Next, the
binary mask of reflections is obtained by thresholding the residue
image. We must notice an interesting effect of ‘‘inpainting” of the
area opening, which interpolates grey values for the removed
reflection according to the surrounded structures. Consequently,
no new gradients are introduced in the image with this filtering
step, see Fig. 4. As we will see later, this property is crucial for
the polar segmentation step. The mathematical formulation is as
follows:

(1) f̂ reflection-free-eye ¼ ca
Sreflex¼800ðfeyeÞ,

(2) Mreflex ¼ Tureflex¼0:15ðfeye � f̂ reflection-free-eyeÞ.
3.4. External iris border extraction

In this module, an estimation of the center of the iris is used to
transform the image to polar coordinates. A prior segmentation of
the iris is obtained performing morphological operators and calcu-
lating U/D minimal paths in this space. Finally, the prior segmenta-
tion is transformed again into cartesian coordinates and refined in
order to suppress eyelid and eyelashes. The output consists in a
binary mask of the iris including the pupil.

3.4.1. Center estimation
Contrary to classical approaches for iris segmentation [9], and

taking into account the heterogeneity of the image database, our
approach for center detection does not rely in the circularity of
the iris. In fact, iris images are usually partially occluded or can
be off-angle, making the iris shape not always completely circular.
Nevertheless, the eye structure is always a embedded structure:
skin is darker than sclera, sclera is lighter than iris and iris is lighter
than pupil. The close-holes operator applied to the eye image, fills
Fig. 4. (a) Original input image; (b) colour component selection:red channel; (c)
reflection-free image; (d) reflections binary mask.
always the embedded structure of the existing part of the sclera–
iris–pupil structure. Though it is usually enough to perform a sim-
ple close-holes operator, in our algorithm we combined two close-
hole operators and image inversions in order to filter the image
structure as much as possible, see Fig. 5. The generalized grey-level
distance starting from the border of the image is calculated on the
residue of the original image and filled image. The distance maxi-
mum is chosen as the corresponding center. As iris images are usu-
ally centered, we introduced a bias to the center in the calculation
of the grey-level distance by taking a ¼ 1. This is the mathematical
formulation of the algorithm steps:

(1) fcent 1 ¼ ðf̂ reflection-free-eyeÞc .
(2) fcent 2 ¼ wchðfcent 1Þ.
(3) fcent 3 ¼ ðfcent 2Þc.
(4) fcent 4 ¼ wchðfcent 3Þ � fcent 3.
(5) To compute dista¼1

fcent 4
ðBBÞ and to assign for ðxc; ycÞ the max of

the distance function.
3.4.2. Polar segmentation
The image is transformed into polar coordinates using the esti-

mated center ðxc; ycÞ. The polar transformation of the function
f ðx; yÞ generates a new function image f �ðq;xÞ : Eq;x !T, where
the support of the image is the space Eq;x; ĝ ¼ ðq;xÞ 2 ðZ � ZpÞ
and where the angular variable x 2 Zp is periodic with period p
equivalent to 2p. A new relation of neighborhood is established be-
tween points at the top of the image ðx ¼ 0Þ and the ones at the
bottom of the image ðx ¼ p� 1Þ. Therefore, the image can be seen
as a strip where the superior and the inferior borders are joined.
Before performing the corresponding morphological operators,
we extended the image along its angular direction by adding the
top part of the image onto the bottom and the bottom part onto
the top. Rendering the image cyclic avoids possible edge effects
and allows us to calculate the circular minimal paths. We assume
that the iris region is a connected component that covers the cen-
ter point. The closed contour delimitating this region is an almost
Fig. 5. Diagram of center detection: (a) input image; (b) intensity projection of x-
axis; (c) residue from close-holes operated on (b); (d) grey-level generalized
distance on (c), arrow indicates the maximum value. (e) residue of close-holes
operators on the eye image. (d) Generalized grey-level distance on (a); in blue the
maximum of the generalized distance, corresponding to the detected center.
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vertical path in the polar space that follows the well defined gradi-
ent corresponding in the ideal case to the transition sclera–iris or
in the remaining cases to the transition skin–iris or eyebrows–iris.
Before calculating this minimal path, a morphological multiscale
gradient is performed in polar coordinates and is then smoothed
by an anisotropic averaging filter (i.e., sizes in radial and angular
dimensions are different). After calculating the U/D generalized
grey-level distance, a set of minimal paths is transformed back to
the cartesian space. The iris corresponds to the region inside the
transformed paths (see Fig. 6). Hereafter the mathematical formu-
lation of the algorithm steps:

(1) f̂ reflection-free-eyeðx; yÞ� ! f̂ �eyeðq;xÞ, with �p 6 x 6 3p (x is
discretized in 180 pixels), 0 6 q 6 Rmax (typically
Rmax ¼ Ymax=2, where Ymax is the image size in vertical
dimension).

(2) f̂ �grad ¼ f �eye � eBq¼5;x¼5 f̂ �eye

� �� �
þ f̂ �eye � eBq¼5;x¼10 ðf̂ �eyeÞ
� �

.

(3) f̂ �grad ¼MeanBq¼3;x¼6 ðf �gradÞ.
(4) To compute dista¼0

f̂ �
grad
ðU;DÞ.

(5) To find the min value umin, and to threshold with Npaths ¼ 500
obtaining the wide minimal path in f �paths.
Fig. 6. (a) Cycled polar transformation of eye image; (b) negative of multiscale
morphological gradient of (a); (c) U/D generalized distance of (b), the yellow line
corresponds to the minimal circular path; (d) in yellow, transformation to cartesian
coordinates of (b) and in blue, selected prior iris segmentation. (e) Normalized
contour outside the prior iris segmentation; (f) in blue refined iris segmentation and
in yellow suppressed part of the prior segmentation.
(6) f �pathsðq;xÞ ! fpathsðx; yÞ.
(7) f̂ paths ¼ uB2ðfpathsÞ (to avoid open contours).

(8) Mprior
iris ¼ yrecððf̂ pathsÞc;mrkðxc; ycÞÞÞ, where mrkðxc; ycÞ is the

image of iris center.
3.4.3. Eyelid and eyelashes suppression
As we mentioned before, the upper part of the iris is sometimes

occluded by eyelid and eyelashes. Thus, the transition (gradient) to
be taken into account for the correct segmentation is not only from
sclera to iris, but also from a fuzzy region composed by eyebrows,
eyelashes and skin to iris. The prior segmentation presented in the
previous section follows a path that combines circularity and gradi-
ent information, but it is not always accurate in the upper regions of
the iris, where limits are not so well defined. For this reason, we
introduced a very simple model that refines this segmentation. The
idea is to ‘‘cut” the top part of the prior segmentation with a straight
line. This line passes by two points that are chosen from a virtual con-
tour placed some pixels outside of the prior segmentation. The tran-
sition of this contour from sclera to the top part of the iris (eyebrows,
eyelashes and skin) in left and right sides defines the cutting line. The
algorithm works as follows (see example in Fig. 6):

(1) To extract an inner contour of the mask iris at a distance of 7
pixels, i.e., Ciris ¼ dB7ðMprior

iris Þ � dB5ðMprior
iris Þ.

(2) Using the horizontal going through the iris center, to decom-
pose the contour into two parts, i.e., Ciris ¼ Cup

iris [ Cdown
iris .

(3) The upper part contour is valued with the intensity of iris
image, i.e., fctu irisðxÞ ¼ f̂ eyeðxÞ if Cup

irisðxÞ ¼ 1, otherwise
fctu irisðxÞ ¼ 0.

(4) The intensities of fctu iris are normalized in the interval 0–1,
then the image is thresholded at value uocclu to obtain the
partial contour bCup

iris, typically uocclu ¼ 0:3.
(5) Mocclu

iris ¼ ConvexHullðCdown
iris [ bCup

irisÞ.
(6) Mrefin

iris ¼ Mprior
iris \Mocclu

iris .

Although it is a very simple model that does not follow precisely
eyebrows and eyelashes artifacts – which are sometimes, espe-
cially in dark irises, not even easy to spot for humans – it provides
a very good trade-off between simplicity/robustness and accuracy.

3.5. Pupil extraction

The pupil is segmented with a similar procedure to the outer iris
border extraction. First, the pupil center is refined using the close-
holes operator and grey-level generalized distance from the prior
iris segmentation. The pupil is then segmented using the circular
minimal-path obtained from the polar transformation of the reflec-
tion-free image.

3.5.1. Center estimation
In order to find the pupil center, we worked only in the iris re-

gion selected by the prior iris segmentation. The close-holes oper-
ator is performed and the grey-level distance is calculated on its
residue with no bias to the center in its metric, see Fig. 7a. The
algorithm is as follows:

(1) f̂ irisðxÞ ¼ f̂ reflection-free-eyeÞðxÞ if Mprior
iris ðxÞ ¼ 1, otherwise f̂ irisðxÞ ¼ 0.

(2) fcent pup ¼ wchðf̂ irisÞ � f̂ iris.
(3) To compute dista¼0

fcen pup
ðBBÞ and to take for ðxpup

c ; ypup
c Þ the max

of the distance function.

3.5.2. Polar segmentation
The reflection-free image is transformed in to its polar coordi-

nates using the center ðxpup
c ; ypup

c Þ and the U/D minimal paths are



Fig. 7. (a) Generalized distance function for pupil center detection and maximum in
blue; (b) cycled polar transformation of eye image centered in maximum of (a); (c)
multiscale gradient constrained to iris prior segmentation boundaries; (d) U/D
generalized distance of (c), the yellow line corresponds to the minimal circular
path; (e) segmentation of pupil in blue and border in yellow.

Fig. 8. Examples of algorithm execution: in blue final segmentation, in red pupil
segmentation, in green extracted reflections and in yellow the suppressed part of
prior segmentation.

M.A. Luengo-Oroz et al. / Image and Vision Computing 28 (2009) 278–284 283
calculated in the same way than in the outer iris segmentation. The
only modification is that these minimal paths are radially con-
strained into ½rmin; rmax�, where rmax is given by 0.8 � radius of the
prior iris segmentation and rmin is fixed to 5 pixels for inconsistency
reasons of the central point (note that for r = 0, all the pixels have
the same value in the polar representation). Taking into account
the radial boundaries, the algorithm is the same as for outer iris
segmentation (the value for Npaths is set to 50), see illustrative
example in Fig. 7. The output of this module is the binary mask
of the segmented pupil in cartesian coordinates: Mpupil.

3.6. Combination of different binary masks and final segmentation

The complete segmentation is given by the refined outer iris
mask minus the reflections and the pupil masks; i.e, Miris ¼
Mrefin

iris n ðMreflex [MpupilÞ This modular paradigm minimizes errors.
We introduced a final security module concerning the maximal
size allowed to the iris ðamax

iris ¼ 35;000 pixelsÞ in case the outer bor-
der segmentation has an improbable size or the minimal circular
path algorithm did not find convergence; i.e., if AreaðMirisÞ >
amax

iris )Miris ¼ ;. See the final segmentation of the presented exam-
ple and other examples of the results of the different segmentation
modules in Fig. 8.

3.7. Parameters optimization

Algorithm parameters were optimized using a 200 computer
cluster (Core2Duo 2 GHz). Each parameter was permitted to vary
between three and five different values previously manually cho-
sen. The parameters for external iris segmentation were exhaus-
tively tested. The parameters that gave the best results were
retained in order to exhaustively test the pupil segmentation
module. These computations allowed us to find the best set of
parameters for each image and the set of parameters that per-
formed best globally in the testing dataset. These parameters were
fixed in the algorithm submitted to the contest and are the ones
described in this paper.

4. Result analysis and discussion

The NICE-I error measure E1 (i.e., the proportion of correspon-
dent disagreeing pixels between the manually corrected image
and the algorithm output) is 0.028 for the training dataset and
0.0301 for the testing dataset. These results were obtained with
the optimized fixed algorithm parameters. In fact, several parame-
ter sets give the same result E1 ¼ 0:028 and an heuristic intuitive
choice of parameters gives similar results. Parameters are mainly
function of image size and can be fixed a priori depending on the
acquisition characteristics. We notice that the proposed method
is quite independent of the database size concerning the optimiza-
tion stage. It has a very robust behavior, performing in a similar
manner for very different kinds of images. The simple model used
to suppress eyelid and eyelashes artifacts is not very precise, but it
works in a very consistent and controlled way. Concerning the algo-
rithm limits with this implementation and the tested parameters
set, we obtained E1 ¼ 0:022 using the best possible parameters



Fig. 9. Examples of images where the proposed algorithm performed (a) better or
(b) worse than the rest of NICE-I participants (in red false negatives and in green
false positives).
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choice for each image. The fact that the circular shape of iris does
not play a critical role in the center detection neither in the seg-
mentation, makes the algorithm suitable for non-ideal images.
The proposed algorithm performed better than the rest of the
NICE-I finalists (see Fig. 9) in several half-closed eyes, medium
off-angle irises, dark skin people and people wearing glasses (the
algorithm is robust to different skin colours or the presence of
glasses). On the other hand, the algorithm achieved worse results
than the other participants (see Fig. 9) for some extreme off-angle
iris – when the center is not correctly detected – and in some easy
images with circular shapes for iris and pupil, where the algorithm
did not obtain a perfect segmentation because of the cut in the top
of the iris and/or a dizzying or inconsistent pupil segmentation
when a dark iris. Current non-optimal implementation in MATLAB
takes around 3 s per image segmentation in a common PC (Core2-
Duo 2.33 GHz). Nevertheless, computational time can be drasti-
cally reduced since there is no exhaustive computation and the
code can be easily optimized.

The main information that remains to be exploited by the
algorithm is colour. In general, we have observed from the train-
ing examples that the best component corresponds to the red one
and consequently, in a very fast algorithm we can fix
feyeðx; yÞ ¼ fRðx; yÞ. Other more advanced colour preprocessing
can improve the grey-level image selection, typically by selecting
between the colour invariant components [10]. As an example, in
order to improve pupil segmentation, each image was processed
using the red component and the saturation component for the
pupil segmentation. Error E1 in the training set calculated from
the best of the two segmentations in each image is 0.025. One
possibility in order to improve results could be to introduce a
previous classification module that choose the correct parameters
for each image depending on its characteristics (iris colour,
glasses, off-angle iris, skin, . . .), but this possibility should be
studied carefully because a classification stage may also introduce
errors. In this sense, first tests with a neural network applied to
the 3D colour histogram shows interesting classification proper-
ties. However, a larger training database is probably needed in or-
der to characterize rare circumstances such as when hair is in
front of the eye.
5. Conclusions

We have proposed a new approach for fast iris segmentation
that relies on the closed nested structures of iris anatomy (the
sclera is always brighter than the iris, and the iris is always bright-
er than the pupil) and its polar symmetry. The proposed method
applies mathematical morphology for polar/radial-invariant image
filtering and feature extraction and for circular segmentation using
shortest paths from generalized grey-level distances. Results on
the NICE-I iris contest placed the algorithm among the finalists
and showed very robust behavior, especially when dealing with
half-closed eyes, different skin colours/illumination or subjects
wearing glasses. Further developments using this kind of approach
or its combination with classical methods look to be an open and
promising field.
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